Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: new perspectives in supported phospholipid bilayer research.
نویسندگان
چکیده
A new concept based on fluorescence lifetime correlation spectroscopy (FLCS) is presented allowing the simultaneous determination of diffusion coefficients of identical molecules located in different environments. The difference in fluorescence lifetimes, which is the main prerequisite for FLCS, is reached by locating one population of the dye close to a light-absorbing surface. Since such surfaces quench fluorescence, the fluorescence lifetime of chromophores located close to these surfaces can be tuned in a specific manner. This approach has been demonstrated for a BODIPY-tail-labeled lipid in supported phospholipid bilayers (SPBs) as well as in phospholipid multilayers adsorbed onto solid supports. In particular, the effect of the solid support type on the fluorescence lifetime as well as its dependence on the BODIPY-support distance has been characterized and verified by theoretical considerations based on precise determination of refractive indices of the used supports. While the fluorescence lifetime of BODIPY dye is 5.6 ns in small unilamellar vesicles (SUVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-[phospho-L-serine] (DOPS), the lifetime is 1.8 ns in DOPC/DOPS SPBs adsorbed onto ITO-covered glass or 3.0 ns in a DOPC/DOPS monolayer adsorbed onto seven 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) layers on oxidized silicon. Using these particular systems, we demonstrated that FLCS enables one to characterize simultaneously two-dimensional lipid diffusion in the planar lipid layers and three-dimensional vesicle diffusion in bulk above the lipid layers using single dye labeling. The autocorrelation functions obtained by this new approach do agree with those obtained by standard FCS on isolated SPBs or vesicles. Possible applications of this virtual two-channel measurement using single dye labeling as well as one detection channel are discussed.
منابع مشابه
Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers.
The effect of high hydrostatic pressure on the lipid bilayer hydration, the mean order parameter, and rotational dynamics of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) cholesterol vesicles has been studied by time-resolved fluorescence spectroscopy up to 1500 bar. Whereas the degree of hydration in the lipid headgroup and inter...
متن کاملMembrane oxidative damage induced by ionizing radiation detected by diphenylhexatriene fluorescence lifetime distributions.
The sensitivity of the fluorescence lifetime of 1,6-diphenyl- 1,3,5-hexatriene (DPH) to the dielectric constant of its environment has been used to detect oxidative damage to phospholipid membranes induced by ionizing radiation. The DPH fluorescence decay in phospholipid vesicles is described well by a continuous distribution of lifetime values, reflecting the various DPH depths in the bilayer ...
متن کاملDiffusion Reflection and Fluorescence Lifetime Imaging Microscopy Study of Fluorophore-Conjugated Gold Nanoparticles or Nanorods in Solid Phantoms
In this paper we report the optical properties of fluorescein-conjugated gold nanoparticles (GNPs) in solid phantoms using diffusion reflection (DR) and fluorescence lifetime imaging microscopy (FLIM). The GNPs attached with fluorescein in solution were studied by fluorescence correlation spectroscopy. The intensity decays were recorded to reveal the fluorescence lifetime of fluorescein while i...
متن کاملEarly Amyloidogenic Oligomerization Studied through Fluorescence Lifetime Correlation Spectroscopy
Amyloidogenic protein aggregation is a persistent biomedical problem. Despite active research in disease-related aggregation, the need for multidisciplinary approaches to the problem is evident. Recent advances in single-molecule fluorescence spectroscopy are valuable for examining heterogenic biomolecular systems. In this work, we have explored the initial stages of amyloidogenic aggregation b...
متن کاملDetection of phospholipid phase separation. A multifrequency phase fluorimetry study of 1,6-diphenyl-1,3,5-hexatriene fluorescence.
Using multifrequency phase and modulation fluorometry and a nonlinear least-squares analysis of lifetime data, we were able to determine the complex decay of 1,6-diphenyl-1,3,5-hexatriene (DPH) in synthetic phospholipid bilayers. Our results showed a monoexponential decay of DPH in the pure isotropic solvents studied, over a wide temperature range, and a double-exponential decay of DPH in phosp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 22 23 شماره
صفحات -
تاریخ انتشار 2006